



# Search for New Physics with Two Photons and Large Missing Transverse Energy using CMS Detector at LHC

Yueh-Feng Liu

Carnegie Mellon University

Fermilab RA Talk

Nov. 20 2012



#### **Motivations**



 Standard Model describes particle physics well but that is not the whole story of our universe



- Higgs mass hierarchy problem
- Gauge unification
- Cosmological and astrophysical problem



### Higgs Mass Hierarchy Problem



- Consider one-loop correction to Higgs mass due to Yukawa coupling
- If  $\Lambda$  is the order of the Plank scale, fine-tuning is needed to bring correction down to the order of  $m_H^2 \sim (125 GeV)^2$

$$\Delta m_H^2 = -\frac{|\lambda_f|^2}{8\pi^2} \Lambda^2 + \mathcal{O}(\ln \Lambda)$$

- Suppose we have a scalar partner which also contributes to one-loop correction
- Quadratic terms cancel, no fine-tuning is needed

$$\Delta m_H^2 = \frac{\lambda_{\tilde{f}}}{8\pi^2} \Lambda^2 + \mathcal{O}(\ln \Lambda)$$

$$H$$

$$H$$



### Gauge Unification



- Theoretically, one believes that  $SU(3)_C \times SU(2)_L \times U(1)_Y$  is embedded in a larger group known as grand unification.
- Under the framework of Supersymmetry (SUSY), gauge couplings unify at high energy scale.





#### **Dark Matter**





- All cosmological observations indicate the existence of dark matter
- SUSY particles could be the candidate for dark matter



### Supersymmetry



- Supersymmetry is a symmetry between fermions and bosons.  $Q|Fermion\rangle = |Boson\rangle$ ,  $Q|Boson\rangle = |Fermion\rangle$
- Equal fermionic and bosonic degrees of freedom requires each Standard Model particle and it's super-partner differ by spin with ½ unit.
- Commutation of SUSY operator and momentum operator implies the equal mass between Standard Model particle and it's super-partner
- Minimal Supersymmetry Standard Model (MSSM) is the minimal extension of the Standard Model
- No SUSY particle with the same mass as it's SM partner is observed meaning SUSY is a broken symmetry if SUSY exists.



#### **SUSY-Breaking**



Hidden Sector SUSY is broken at high energy scale Messenger

Visible Sector contains MSSM

| Messenger            | SUSY breaking scale | Scale of messenger  | Gravitino       |
|----------------------|---------------------|---------------------|-----------------|
| gauge<br>mediation   | $\ll 10^{10}  GeV$  | $\ll$ $M_{pl}$      | $\ll 100  GeV$  |
| gravity<br>mediation | $\sim 10^{10} GeV$  | $\sim$ $M_{\it pl}$ | ~100 GeV        |
| anomaly<br>mediation | $\sim 10^{12} GeV$  | $\sim$ $M_{pl}$     | $\sim 10^6 GeV$ |



#### General Gauge Mediation (GGM)



- Gravitino is the lightest SUSY particle (LSP) in GGM
- Consider Neutralino is the next-to-lightest SUSY particle (NLSP)
- Neutralino mass eigenstates are mixtures of Bino, Wino, and Higgsinos
- If R-parity is conserved, SUSY particles are produced in pair

$$R = (-1)^{3B+L+2s}$$







## Signal







yy Simplified Model



#### CMS Detector







### **Analysis Overview**



#### Signal:

 Events with two photons, at least one jet, and high missing transverse energy

#### QCD Background:

- Main background of this analysis
- Direct \( \gamma \cdot \gamma \) production
- $\gamma + jet$ , or multi jets while jet(s) fake photon(s)
- No true MET events
- Use control samples to estimate contributions

#### ElectroWeak Background:

$$W+y\rightarrow e v+y$$

• 
$$W + jet \rightarrow e \nu + \gamma$$

- The electron is misidentified as a photon
- Events with true MET
- Apply electron misidentification rate to control sample to obtain prediction



### Dataset & Triggers



- $\sqrt{s}$  = 7 TeV proton-proton collisions data  $\sim 5 fb^{-1}$
- HLT\_Photon26\_IsoVL\_Photon18
- HLT\_Photon36\_CaloIdL\_Photon22\_CaloIdL
- HLT\_Photon36\_CaloIdL\_IsoVL\_Photon22\_CaloIdL\_IsoVL
- HLT\_Photon36\_CaloIdL\_IsoVL\_Photon22\_R9Id
- HLT\_Photon36\_R9Id\_Photon22\_CaloIdL\_IsoVL





25

30

20





#### Identifications and Event Selections



#### **Photons:**

leading photon Et > 40 GeV trailing photon Et > 25 GeV  $|\eta| < 1.44$ 

#### **Electrons**:

identical to photons' ID but require PixelSeed 81 < M(ee) < 101 GeV yy Sample:

candidate sample

 $e\gamma$  Sample:

EWK background estimation

#### Fake Photons:

identical to photons' ID but reverse combined Isolation or  $\sigma_{i\eta i\eta}$ 

#### Jets:

particle flow jets Et > 30 GeV  $|\eta|$  < 2.6

ff and ee samples:

QCD background estimation control samples



#### Photon Id data/MC Scale Factor



• Assume 
$$\frac{\epsilon_{\gamma}^{data}}{\epsilon_{\gamma}^{MC}} = \frac{\epsilon_{e}^{data}}{\epsilon_{e}^{MC}}$$

- Use tag and probe method to obtain  $\epsilon_c^{data}$
- A tag in  $e^+e^-$  events must pass strict electron criteria while loose cuts are applied on a probe
- All tag-probe pair and pair whose probe passes photon id are fitted simultaneously



$$\frac{\epsilon_{\gamma}^{data}}{\epsilon_{\gamma}^{MC}} = \frac{\epsilon_{e}^{data}}{\epsilon_{e}^{MC}} = 0.994 \pm 0.002(stat.) \pm 0.035(syst.)$$



# Estimation of MET Background (Electroweak)



- Fit Z peak in ee and  $e\gamma$  invariant mass spectra to get the numbers of events, respectively.
- $\frac{N_{e\gamma}(Z\to ee)}{N_{ee}(Z\to ee)} = \frac{2f_{e\to\gamma}}{(1-f_{e\to\gamma})} \quad f_{e\to\gamma} : 0.014 +/- 0.002(stat.) +/- 0.005(syst.)$
- Scale the MET distribution of  $e\gamma$  sample by  $\frac{f_{e\to\gamma}}{(1-f_{e\to\gamma})}$







# Estimation of MET Background (QCD)



- Use both control samples (ff, ee) to estimate QCD MET distribution.
- If there is no TRUE MET in the event, the resolution of hadronic activity in the event will dominate the MET in the event.
- Take the di-EM Pt spectrum from candidate sample as a measure of hadronic activity in the event.
- Reweight the shape of MET distribution of control samples by using the di-EM Pt ratio of candidate sample and control samples.
- Normalize the reweighted MET distribution to low MET region (below 20 GeV) of candidate events.







# Estimation of QCD Background using ff sample











# Estimation of QCD Background using ee sample







- Before we can use ee control sample to predict QCD MET distribution, we need to subtract other contributions with true MET contained in the sample.
- Use sideband method to subtract ttbar, WW contributions
- Use Monte Carlo samples to subtract Di-boson contributions center around Z invariant mass: WZ, ZZ processes



# Estimation of QCD Background using ee sample



- Sideband subtraction method:
  - Signal region: invariant mass 81-101 GeV
  - Sidebands region: invariant mass 71-81 and 101-111 GeV
  - Also apply di-EMPt reweighting to ee sample in sideband regions
  - Subtract MET distribution of sideband regions from MET distribution of signal region

#### Di-boson subtraction:

- apply di-EMPt reweighting to MC samples
- Normalize to total luminosity using NLO cross section and subtract MET distributions from MET distribution of ee sample





#### Result



| $E_{\rm T}^{\rm miss}$ bins [GeV] | 50–60                     | 60–70                    | 70–80                   | 80–100                 | > 100                  |
|-----------------------------------|---------------------------|--------------------------|-------------------------|------------------------|------------------------|
| QCD background                    | $183.8 \pm 17.7 \pm 12.5$ | $67.3 \pm 10.7 \pm 13.6$ | $15.4 \pm 5.1 \pm 11.5$ | $9.4\pm4.0\pm0.7$      | $10.1 \pm 4.2 \pm 1.4$ |
| EWK background                    | $6.5 \pm 0.3 \pm 2.2$     | $3.1\pm0.2\pm1.0$        | $2.2\pm0.2\pm0.7$       | $2.2\pm0.2\pm0.8$      | $2.9\pm0.2\pm1.0$      |
| Total background                  | $190.3 \pm 17.7 \pm 12.7$ | $70.4 \pm 10.7 \pm 13.7$ | $17.6 \pm 5.1 \pm 11.5$ | $11.6 \pm 4.0 \pm 1.0$ | $13.0 \pm 4.2 \pm 1.7$ |
| Data                              | 199                       | 63                       | 26                      | 26                     | 11                     |



- Use ff sample as the main QCD prediction and take the difference between ff and ee samples as systematic error
- Good agreement between candidate MET distribution and background estimates



# Systematic Uncertainties



| Systematic                 | Uncertainty [%] |
|----------------------------|-----------------|
| Integrated luminosity      | 4.5             |
| Photon Data/MC scale       | 4               |
| Jet energy scale           | 2               |
| Renormalization scale      | 4 - 28          |
| PDF error on cross section | 4 - 66          |
| PDF error on acceptance    | 0.1 - 9         |



### Limit Setting Procedure



#### Define likelihood ratio

$$Q = \frac{P(observation \mid signal + background \; hypothesis)}{P(observation \mid background \; hypothesis)}$$

$$CL_{sb} \equiv P_{sb}(Q \le Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_{sb}}{dQ} dQ$$

$$CL_b \equiv P_b(Q \le Q_{obs}) = \int_{-\infty}^{Q_{obs}} \frac{dP_b}{dQ} dQ$$

$$CL_s \equiv \frac{CL_{sb}}{CL_b}$$

•  $CL_s$  is  $\leq 5\%$  --> signal hypothesis is excluded at 95 % confidence level



### Interpretations



- Interpret results based on General Gauge Mediated model
- Choose planes in mass space and other SUSY particles are decoupled

| Scan                 | Gluino mass  | Squark mass  | Bino mass   | Wino mass    |
|----------------------|--------------|--------------|-------------|--------------|
| Gluino-Squark (bino) | 400-2000 GeV | 400-2000 GeV | 375 GeV     | 2000 GeV     |
| Gluino-Squark (wino) | 400-2000 GeV | 400-2000 GeV | 5000 GeV    | 375 GeV      |
| Gluino-Bino          | 300-1500 GeV | 5000 GeV     | 50-1500 GeV | 2000 GeV     |
| Gluino-Wino          | 300-1000 GeV | 5000 GeV     | 5000 GeV    | 100-1000 GeV |
| Wino-Bino            | 5000 GeV     | 5000 GeV     | 50-1000 GeV | 115-1000 GeV |



## Limit on Gluino-Squark (bino) Plane













# Limits on Additional Planes in Phase Space







### Simplified Model Interpretation











#### Interpretation on Universal Extra Dimensions



- SM particles can propagate in the additional dimensions
   --> production of a pair of Kaluza-Klein (KK) towers
- KK particles make cascade decay to lightest KK particle (LKP), which is the KK photon
- Assume the UED is embedded in a space of additional n Large Extra Dimensions where only gravitons propagate
- $\gamma^* \rightarrow \gamma + Graviton$
- KK photons decay gravitationally resulting Di-Photon + missing Et in the final state



#### Limit on UED





- n = 6, 1/R < 1380 GeV is excluded</p>
- n = 2, 1/R < 1350 GeV is excluded</p>
- Most strict UED limit to date





# Search for Supersymmetry in Events with one Photon, Jets and Missing Transverse Energy



 $W_{\mathcal{Y}}$  Simplified Model

11/20/2012 Yueh-Feng Liu



### Single Photon Analysis



- Background:
  - QCD
  - Electroweak
  - $W/Z/t \overline{t} + \gamma$

- Use Photon-HT trigger to catch signals
- Selections:
  - Photon Pt > 80 GeV
  - → HT > 450 GeV
  - ->= 2 Jets
- Analysis strategy and identification criteria are very similar to di-photon analysis
- weight the control sample from data (fake photon) to estimate QCD background
- Apply electron misidentification rate to the control sample from data (electron) to estimate electroweak background
- ISR/FSR  $(W/Z/t \, \overline{t})$  contributions are determined directly from Monte Carlo samples



### Results and Interpretation



| $E_{\rm T}^{\rm miss}$ bins [GeV]           | 100–120       | 120-160       | 160-200       | 200–270       | 270–350       | > 350         |
|---------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| QCD (from data)                             | $262 \pm 37$  | $173 \pm 27$  | 82 ±24        | $55 \pm 14$   | 29 ±11        | $6.8 \pm 4.2$ |
| $\mathrm{e}{ ightarrow} \gamma$ (from data) | $4.5 \pm 1.9$ | $6.0 \pm 2.5$ | $3.2 \pm 1.3$ | $2.3 \pm 1.0$ | $0.8 \pm 0.4$ | $0.4 \pm 0.2$ |
| FSR/ISR(W,Z)                                | $4.7 \pm 1.3$ | $8.2 \pm 1.8$ | $5.5 \pm 1.5$ | $5.4 \pm 1.3$ | $4.0 \pm 1.3$ | $1.7 \pm 0.9$ |
| FSR/ISR (tt)                                | $0.6 \pm 0.3$ | $1.7 \pm 0.6$ | $0.9 \pm 0.4$ | $0.5 \pm 0.4$ | $0.4 \pm 0.3$ | $\leq 0.01$   |
| Total SM estimation                         | 272 ±37       | $189 \pm 27$  | 91 ±24        | $63 \pm 14$   | $34 \pm 11$   | $8.8 \pm 4.3$ |
| Data                                        | 283           | 199           | 70            | 39            | 20            | 4             |







#### Limit on GGM Model





Single photon analysis improves CMS's sensitivity in wino-like case



### Summary



- We have completed a search for GGM SUSY with diphoton final state using all of 2011 CMS data.
- Data-driven methods were used to estimate dominate backgrounds.
- We observe no excess beyond Standard Model.
- We set 95% CL upper limits on cross sections and exclude gluino and squark masses below
  - ~1TeV (bino-like neutralino)
  - ~600 GeV (wino-like neutralino)
  - ~1 TeV (simplified model)





# Backup Slides



#### **Identification Details**



#### Photons:

- In barrel region (|Eta| < 1.4442)</li>
- leading photon Et > 40 GeV, trailing photon Et > 25 GeV
- combined Isolation (DR03 cone) < 6 GeV</p>
- → H/E < 0.05

$$\begin{array}{ll} & \sigma_{i\eta i\eta} \! < \! 0.011 \\ & \text{No PixelSeed} \end{array} \quad \sigma_{i\eta i\eta}^2 = \frac{\sum_i^{5\times5} w_i (\eta_i - \bar{\eta}_{5\times5})^2}{\sum_i^{5\times5} w_i}, \quad w_i = max(0, 4.7 + ln \frac{E_i}{E_{5\times5}}) \\ & \quad \text{To calculate the properties of the p$$

• r9 < 1.0

#### Fake Photons:

- Identical to photons but reverse combined Isolation (6 < Combined Isolation < 20 GeV) OR</li>
- $0.011 < \sigma_{i\eta i\eta} < 0.014$  (Combined Isolation < 20 GeV)

#### Electrons:

Identical to photons but requiring PixelSeed



# Identification and Event Selection Details



#### Jets:

- AK5 L1FastL2L3 corrected PFJet
- Pt > 30 GeV/c
- → |Eta| < 2.6</p>
- Neutral Hadron Fraction < 0.99</p>
- Neutral EM Fraction < 0.99</p>
- Number of Constituents > 1
- Charged Hadron Fraction > 0
- Charged EM Fraction < 0.99</li>
- Charged Multiplicity > 0
- dR between photons and jets >= 0.5 if require 1+jet
- Jet cleaning cone size dR = 0.5

Primary Vertex Selection:

Requiring at least one primary vertex

- Not fake
- → Ndof > 4
- → fabs(z) < 24 cm</p>
- → fabs(rho) < 2 cm

- Selected EM objects must be separated by dR > 0.6
- For no jet requirement case, dPhi between selected EM objects > 0.05
- Apply invariant mass 81- 101 GeV cut to ee sample



### Pile-up Compensation



- Isolation<sub>ECAL, compensated</sub> = Isolation<sub>ECAL</sub>  $\rho \times A_{ECAL, Eff}$
- Isolation<sub>HCAL, compensated</sub> = Isolation<sub>HCAL</sub>  $\rho \times A_{HCAL, Eff}$
- $\rho$ : average energy per unit area deposited in calorimeters for each event

Average ECAL isolation







### Optimization of Upper Isolation Cut



$$\chi^2 = \frac{1}{N_{\text{bin}}} \sum_{i=1}^{N_{\text{bin}}} \frac{(ff_i - \gamma \gamma_i)^2}{\sigma_{ff_i}^2 + \sigma_{\gamma \gamma_i}^2}$$





#### Other Distributions













#### Di-Photon Analysis 8 TeV Results







